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ABSTRACT There are applications that may require removing the trace of a sample from the system,
e.g., a user requests their data to be deleted, or corrupted data is discovered. Simply removing a sample
from storage units does not necessarily remove its entire trace since downstream machine learning models
may store some information about the samples used to train them. A sample can be perfectly unlearned
if we retrain all models that used it from scratch with that sample removed from their training dataset.
When multiple such unlearning requests are expected to be served, unlearning by retraining becomes
prohibitively expensive. Ensemble learning enables the training data to be split into smaller disjoint shards
that are assigned to non-communicating weak learners. Each shard is used to produce a weak model.
These models are then aggregated to produce the final central model. This setup introduces an inherent
trade-off between performance and unlearning cost, as reducing the shard size reduces the unlearning cost
but may cause degradation in performance. In this paper, we propose a coded learning protocol where
we utilize linear encoders to encode the training data into shards prior to the learning phase. We also
present the corresponding unlearning protocol and show that it satisfies the perfect unlearning criterion.
Our experimental results show that the proposed coded machine unlearning provides a better performance
versus unlearning cost trade-off compared to the uncoded baseline.

INDEX TERMS Machine unlearning, random coding, efficient sample removal.

I. INTRODUCTION
Given the abundance of data, machine learning (ML)
has become ubiquitous in the past decade [1]–[4]. Once
an ML model is trained, some samples in the training
dataset might be required to be unlearned due to various
reasons, e.g., to satisfy users’ requests of data removal,
or due to discovery of corrupt low-quality samples or ad-
versarially modified samples that are specifically created
to adversely affect the performance of the ML model.
As ML models may be arbitrarily complex, and may be
trained on large datasets, it is important to devise un-
learning methods that are efficient and can work with
arbitrary models.

A. OUR CONTRIBUTION
In this paper, we explore perfect machine unlearning for
regression problems. We consider an ensemble learn-
ing setup similar to the one presented in [5] where the

dataset is sharded at the master node and assigned to
non-communicating weak learners to be trained inde-
pendently from each other and their models are then
aggregated at the master node. In this setup, the cost
of unlearning is the time required to retrain the affected
weak learners trained on the desired samples, which is
directly related to the size of the shards as smaller shards
incur less unlearning cost; however, this may be at the
cost of degraded performance. Figure 1 shows a sketch
of the performance versus unlearning cost trade-off for
the uncoded machine unlearning protocol presented in
[5]. We aim to design a protocol that operates within
the desirable region shown in the figure. In this figure,
the original learning algorithm, where a single learner
is trained on the entire uncoded training dataset, sets
the lower bound of the achievable mean squared error
(MSE), which may be at an unreasonable unlearning
cost for various applications. We present a new frame-
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Figure 1. Sketch of performance vs unlearning cost trade-off of the
uncoded machine unlearning proposed in [5].

work for encoding the dataset prior to training that can
potentially outperform uncoded machine unlearning in
terms of performance versus unlearning cost trade-off
as shown in Figure 1. We show that the proposed pro-
tocol can provide significant improvements in perfor-
mance when compared to uncoded machine unlearning
and discuss certain intuitions behind the proposed pro-
tocol’s success.

More specifically, we consider a regression problem
and present a coded learning protocol that utilizes a ran-
dom linear coding scheme to combine the training sam-
ples randomly into a smaller number of samples which
are then used to train weak learners with the goal of en-
abling efficient unlearning. Then, we present an efficient
unlearning protocol that utilizes the aforementioned cod-
ing scheme to remove the unlearned samples from the
training dataset as well as to update the model to com-
pletely remove such samples from the model. This is
done while maintaining a better performance compared
to the uncoded machine unlearning. One of the inspira-
tions of utilizing random codes in this work is the suc-
cess they have shown in different information processing
scenarios such as random codes to achieve channel ca-
pacity [6], random projections in learning kernels [7],
[8], and random projection in compressed sensing [9],
[10]. Random projections [7] enable efficient learning of
large-scale kernels that are capable of modeling nonlin-
ear relationships. We take advantage of random projec-
tions to model nonlinear relationships and propose the
use of random linear codes to enable efficient unlearn-
ing. Finally, we show the success of the proposed proto-
col by showing experimental results of the performance
against the unlearning cost on a few realistic datasets as
well as synthetic datasets.

B. RELATED WORK
The problem of efficiently removing information about a
training sample from a trained ML model, referred to as
machine unlearning [11], has been recently introduced
in the literature. In this scenario, a trustworthy party
aims to train an ML model on a training dataset of raw
data with the guarantee that unlearning requests are sat-
isfied by removing the sample from the training dataset
as well as removing any trace of them in the trained ML
model. One straightforward approach to perfectly satisfy
this requirement is to retrain the model from scratch af-
ter removing the samples that need to be unlearned from
the training dataset. However, as large training datasets
are increasingly available and used in these models, re-
training after receiving each unlearning request becomes
prohibitively expensive.

Several works have been proposed in the literature to
provide efficient unlearning solutions. Perfect unlearn-
ing ensures guaranteed removal of data from learning
models. For instance, [11] uses statistical query learn-
ing to speed up the unlearning process. A more general
framework for perfect unlearning considers an ensem-
ble learning setup where a master node shards the train-
ing dataset and assigns the shards to non-communicating
weak learners that are trained independently from each
other, and then aggregates their models using a certain
aggregation function [5].

A different approach to the unlearning problem is
known as statistical unlearning, where the data removal
protocols offer statistical guarantees of removal, sim-
ilar to statistical methods for estimating leave-one-out
cross validation [12]–[15]. For instance, the work in [16]
presents a statistical formulation of data deletion from
machine learning similar to differential privacy and de-
scribes a method to achieve deletion in linear and logis-
tic regression scenarios. A formulation of data deletion
problems using cryptographic notations is presented in
[17] with a brief discussion on deletion in ML models.
Other works on statistical unlearning are also presented
in [18]–[21]. Statistical unlearning is typically suitable
for convex models which are well-behaving; however,
they often provide no guarantees for non-convex mod-
els.

Another closely related line of work is concerned with
individual samples’ privacy; this is relevant in cases
where the samples contain highly sensitive informa-
tion and they need to be kept secret even from the
ML model. Examples of privacy-preserving ML include
works based on differential privacy such as [22]–[24]
and privacy-preserving learning such as [25]–[30]. A
major distinction between this line of work and machine
unlearning is that samples do not need to be kept private
in machine unlearning, but the requests of unlearning
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need to be honored.
Different methods proposed in the ML literature can

be useful in reducing the training cost of ML mod-
els. One method used to reduce the number of the ran-
domly projected features of samples is known as data-
dependent random projections where feature projections
are sampled from some data-dependent distributions [8],
[31], [32]. Another method is known as data distillation
where the dataset is compressed using a distillation al-
gorithm [33], [34]. However, since these methods are
date-dependent, they inherently leak information about
samples and their algorithms. Hence, random projections
algorithms or distillation algorithms need to be updated
accordingly to mitigate any leakage of information about
the samples to ensure perfect unlearning after retraining
the model. Consequently, this process incurs an addi-
tional overhead in the unlearning cost that should not
be neglected.

C. ORGANIZATION
The rest of the paper is organized as follows. In Section
II the problem setup and the proposed protocol are pre-
sented including the proposed protocols for coded learn-
ing and unlearning. In Section III several experiments
are conducted to evaluate the proposed protocol using
certain datasets along with a discussion on the intuition
behind the protocol’s success. Finally, the paper is con-
cluded along with a discussion on possible future work
directions in Section IV.

II. PROBLEM SETUP AND PROPOSED PROTOCOL
In this section, the setup for the problem of machine
learning and unlearning is described along with the pro-
posed protocol for regression models. First, a descrip-
tion of a regression learning model along with its met-
rics is discussed. Then, the proposed protocol for coded
machine learning using data encoding of the training
dataset prior to training the learning model is presented
and a specific encoder for regression models is intro-
duced. Moreover, the corresponding protocol for perfect
coded unlearning is introduced, and its success is shown.

A. PROBLEM SETUP
Consider a setup where the training dataset is a matrix
denoted as [X,y] whose rows are the independent and
identically distributed (i.i.d.) samples xi along with their
response yi for i = 1, 2, ..., n, where xi ∈ X and yi ∈ Y .
We denote n as the number of samples, d as the number
of features. Columns of X are referred to as the features
while y is referred to as the response variable, whose
elements are of the form

yi = f(xi) + ϵ. (1)

The training dataset is used to train a learning model
to produce a model, i.e., a function f : X → R, that
minimizes a loss function. For regression problems, the
loss ℓ is a function that measures the goodness of fit
of the model f ∈ F on the training dataset, typically
expressed as

ℓ(X,y; f) =
1

n

n∑︂
i=1

(yi − f(xi))
2 +Ω(∥f∥F ), (2)

where Ω is a regularization term. The learning model
finds a function f∗ that minimizes the loss function as
follows

f∗ = argmin
f∈F

ℓ(X,y; f). (3)

The Representer theorem is a powerful theorem for gen-
eral regression problems. It states that for the regularized
loss in (2), when using a a strictly increasing function
Ω, and a kernel k : X × X → R with F as its asso-
ciated Reproducing Kernel Hilbert Space (RKHS), then
the minimizer f∗ of the loss function above is expressed
in the form [35]

f∗ =

n∑︂
i=1

wik(·, xi), (4)

where wi ∈ R. This powerful theorem translates any
regression problem, even nonlinear problems, as a lin-
ear problem in the RKHS. Hence, the problem can be
transformed and re-expressed to be as follows

y = Kw + ϵ, (5)

where K is an n×n kernel matrix whose elements kij =
k(xi, xj), w is a n×1 coefficient vector, and ϵ is a n×1
noise vector. The L2-regularized learning model for this
kernel problem, also known as ridge regression, aims to
estimate w that minimizes the loss function

ℓ(K,y;w) =
1

n

n∑︂
i=1

(yi − kT
i w)2 + λwT w, (6)

where ki is the i-th row of K, and λ is the reg-
ularization parameter. We denote the resulting model
trained on [X,y] when initialized with parameters h as
f∗ =Mh(X,y).

These kernel methods suffer greatly in regimes where
the size of training datasets is large. Specifically, for a
dataset with a fixed number of features, computations
of the elements in the kernel matrix result in an ad-
ditional complexity of O(n2) on top of the optimiza-
tion method used to solve the problem. One method of
resolving this issue is proposed in [7], which suggests
using random projections of the features to a relatively
low-dimensional space compared to n. This gives a good
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approximation of the function f∗ using random projec-
tions to a D-dimensional space where d < D ≪ n,
which enables efficient linear regression methods to be
used to solve the regression problem. These random pro-
jections enable an approximation of the target function
f∗, denoted as f̂ , expressed as follows

f̂(x) =
D∑︂
i=1

ϕ(xTθi + bi)wi + ϵ, (7)

where ϕ is an activation function, θi and bi are chosen
randomly from some distributions, wi’s are the coeffi-
cients to be estimated, and D is the desired dimension
of the projected features [7]. This enables us to apply
this transformation of the original feature matrix X into
another feature matrix Xp of size n×D, then we have
the following

y = Xpw + ϵ, (8)

where w are the coefficients to be estimated of size D×
1.

After the model has been trained, it is used for pre-
diction until a request of unlearning samples arrives.
Once unlearning requests arrive, the model stops pro-
cessing any prediction requests and launches the un-
learning protocol. Machine unlearning is formulated as
follows: when an unlearning request of sample [xTu , yu]
from the training dataset is received, the model must be
immediately updated to remove any effect of this sam-
ple, i.e., unlearn it, fromMh(X,y). The unlearning pro-
tocol is denoted as U and its output is an updated model
denoted as U(Mh(X,y), [xu, yu]). In this paper, we re-
quire U to be a perfect unlearning protocol defined as
follows [5].
Definition 1 (perfect machine unlearning): An unlearn-
ing protocol U on model Mh(X,y) is said to be per-
fect if the output of the unlearning protocol removing
the sample [xT

u , yu], denoted as U(Mh(X,y), [xTu , yu]),
is a statistical draw from the distribution of the models
trained on [X\xu,y\yu], denoted asMh(X\xu,y\yu),
where [X\xu,y\yu] denotes the training dataset [X,y]
after removing the sample [xTu , yu] from it.

Perfect unlearning protocols ensure the complete re-
moval of samples from the model but may suffer in
terms of their efficiency. Removing the samples from
the training dataset and retraining a model from scratch
achieves perfect unlearning. However, the major hurdle
of this approach is the extended delay time required to
unlearn a sample as retraining is the process that mainly
causes this delay; hence, it is desirable to design ef-
ficient unlearning protocols that can be used for large
scale datasets.

EncRdeU

AggUegaWRU

....

Figure 2. Proposed coded learning setup.

B. PROPOSED PROTOCOL
The proposed protocol is described in two parts, learn-
ing and unlearning. In the learning phase, we present a
method for encoding the training dataset prior to training
and describe a specific coding scheme for a regression
learning model. After the model has been trained, we
transition into the unlearning phase, we describe an ef-
ficient method to process unlearning requests using the
coded training dataset and update the model to perfectly
unlearn the desired samples.

1) Learning
The proposed protocol introduces the idea of data en-
coding prior to training the ensemble model as shown
in Figure 2. The learning model M, also referred to as
the master node, is launched to learn a regression model
whose training dataset is assumed to have been prepro-
cessed. The model starts by passing the training dataset
through an encoder to produce a sharded coded training
dataset that contains r coded shards. Then, each coded
shard j is used to train a weak learner Lj to produce
a model denoted as f∗

j . Once these weak learners are
trained, the model M is ready for prediction. When sam-
ple x is passed to the model M, it is directly passed to
each of the weak learners to produce weak predictions
f∗
j (x) for j = 1, 2, ..., r, then the model M computes the

final prediction f∗(x) by applying an aggregation func-
tion a : Rr → R, such as averaging, a majority vote,
etc, as follows

f∗(x) = a(f∗
1 (x), f

∗
2 (x), ..., f∗

r (x)). (9)

For linear regression models, or nonlinear regression
models coupled with random projections, we know that
the generated model f∗

j is the corresponding weights
w∗

j . Once all weak learners Lj’s have been trained, M
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produces a matrix W∗ whose columns are the estimated
coefficients from the weak learners as follows

W∗ = [w∗
1,w∗

2, ...,w∗
r ]. (10)

Once W∗ is available, the model M computes the aggre-
gate prediction weights by computing the mean of the
weight vectors of the weak learners to produce w∗

agg,
which is directly used at the time of prediction, bypass-
ing the weak predictions computations. When the sample
x is passed as input, the predicted output is

f∗(x) = xT w∗
agg. (11)

The encoding of the training dataset is a method to
produce a new training dataset with the goal of reducing
learning and unlearning costs. Coding can be viewed as
a method to incorporate multiple samples from the un-
coded training dataset into a single sample of the coded
training dataset to enable efficient learning and unlearn-
ing. In other words, although we have fewer coded sam-
ples for weak learners, each of these coded samples is
created from multiple uncoded samples, enabling the
model to learn these uncoded samples indirectly. First,
let us define an encoder as follows.
Definition 2 (encoder): An encoder with rate τ is de-
fined as a function that transforms the original training
dataset with n samples into another dataset with m sam-
ples while maintaining the same number of features. The
rate of this encoder is

τ =
n

m
. (12)

When using shards of equal size, as considered in this
work, the rate can also be viewed as the ratio of the num-
ber of uncoded shards to the number of coded shards.
The rate and design of the encoder are now additional
parameters of the model that require tuning when train-
ing a model. It is worth noting that the design of the
encoder itself for a fixed rate directly affects the un-
learning cost of the overall model as well as the per-
formance, as will be clarified later. Hence, it should be
carefully considered when designing a model.

The proposed coded learning model for linear regres-
sion is described in Algorithm 1. The learning algorithm
takes the training dataset [X,y] and code parameters
s, r, ρ as inputs and outputs the coded training dataset
along with the coding matrix and the trained model. The
model M utilizes a linear encoder described in Algo-
rithm 2 to encode the training dataset using the provided
code parameters. The linear encoder takes the desired
code parameters s, r, ρ along with the training dataset
[X,y] as inputs and processes it as follows: [X,y] is di-
vided into s disjoint submatrices of equal size, i.e., each
has n = n

s samples, denoted as [Xi,yi] for i = 1, 2, ..., s.
These are encoded using a matrix G, described next, to

Algorithm 1 Learning (Learn)
1: Input: [X,y], s, r, ρ.
2: Output: W∗, {X,y},G.
3: At master node M, do
4: if s ̸= 1 then
5: {X,y},G← LinearEnc([X,y], s, r, ρ).
6: else
7: {X,y} = {[X,y]}
8: G = [1]
9: end if

10: Send [Xi,yi] to weak learner Li

11: At weak learner Li, do
12: w∗

i ← argminw ℓ([Xi,yi],w)
13: Send w∗

i to M
14: At master node M, do
15: W∗ = [w∗

1,w∗
2, ...,w∗

r ]
16: w∗

agg = 1
r

∑︁r
i=1 w∗

i

Algorithm 2 Linear encoder (LinearEnc)
1: Input: [X,y], s, r, ρ.
2: Initialization: G = 0s×r, {X,y} = empty.
3: Output: {X,y}, G.
4: while G is not full column rank do
5: Set G = 0s×r

6: while G has any all-zero rows do
7: G← RandMatrix(s, r, ρ)
8: end while
9: end while

10: Split [X,y] into s submatrices [Xi,yi] of equal size

11: for j in range(r) do
12: {X,y}.append([(

∑︁s
i=1 gijXi), (

∑︁s
i=1 gijyi)])

13: end for
14: return {X,y},G

produce [Xj ,yj ], for j = 1, 2, ..., r. The output of this
encoder is {X,y} whose elements are the coded shards
used to train the corresponding weak learners, i.e., shard
j is used to train the j-th weak learner to produce the
corresponding optimum w∗

j . Note that the code parame-
ters should keep the coded shards in the original regime
of the original dataset; for example, if n> d, then n> d.

Following the success of random codes in informa-
tion theory [6] and random projections in signal pro-
cessing [9], [10] and machine learning [7], we propose
to use a random binary matrix generator (RandMatrix)
to generate G. In this protocol, the matrix G is of size
s × r and density 0 < ρ ⩽ 1. We desire the matrix
G to be a tall matrix, i.e., r ⩽ s, since our goal is to
reduce the number of coded samples used for training.
Since r ⩽ s, G needs to satisfy two conditions: each
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Algorithm 3 Unlearning (Unlearn)

1: Input: {X,y}, [Xu,yu],u,G,W∗.
2: Initialization: j = empty.
3: Output: {˜︁X, ˜︁y},˜︂W∗.
4: At master node M, do
5: Set {˜︁X, ˜︁y} = {X,y}
6: Set ˜︂W∗ = W∗

7: for i in range(length(u)) do
8: s′ ← index of the uncoded shard containing

[xT
i , yi]

9: i′ ← index of [xTi , yi] within shard s′

10: j′ ← indices of nonzero elements in row s′ of G
11: for j′ in j′ do
12: ˜︁xj′i′ = ˜︁xj′i′ − gs′j′xi
13: ˜︁yj′i′ = ˜︁yj′i′ − gs′j′yi
14: end for
15: j.append(j′)
16: end for
17: ju ← unique(j)
18: Send [˜︁Xj , ˜︁yj ] to weak learner Lj for all j ∈ ju
19: At weak learner Lj , do
20: w̃∗

j ← argminw ℓ(˜︁Xj , ˜︁yj ;w)
21: Discard the previous model w∗

j

22: Send w̃∗
j to M

23: At master node M, do
24: Replace column j of ˜︂W∗ with the updated w̃∗

j for
all j ∈ ju

25: Set w̃∗
agg = 1

r

∑︁r
i=1 w̃∗

i

row of G should have at least one nonzero element, and
it should have full rank. The first condition ensures that
all the shards are used in training the model, while the
second condition ensures that every weak learner has a
training dataset that is unique from all other weak learn-
ers. Another consequence of using a code with r ⩽ s is
that it lowers the initial learning cost by a factor of τ
compared to uncoded machine unlearning. For example,
for some s and r then we only need to train r learners
each using n/s coded samples, compared to s learners
each with n/s uncoded samples in uncoded machine un-
learning.

2) Unlearning

Now that the model has been trained on the coded
training dataset, we proceed to describe a protocol to
unlearn samples from this model. Our goal is to re-
move such samples from the coded shards as well as
to remove any trace of such samples from the affected
weak learners where such samples appear. The unlearn-
ing protocol for the aforementioned learning protocol
is described in Algorithm 3. The algorithm’s inputs are

the coded dataset {X,y}, the samples to be unlearned
[Xu,yu], their indices u in the uncoded training dataset
[X,y], the matrix G, and the original model estimated
coefficients W∗. The algorithm’s outputs are the updated
coded dataset {˜︁X, ˜︁y}, and the updated estimated coeffi-
cients of the model ˜︂W∗. Essentially, the algorithm needs
to identify the uncoded shards that include the sam-
ples with indices u as well as their corresponding coded
shards using the matrix G. The samples first need to be
removed from the coded shard by subtracting them from
the corresponding coded samples in all coded shards
where they appear to eliminate their effect from the
coded shards. Once all the coded shards are updated,
they are then used to update their corresponding weak
learners to unlearn these samples from the weak learner
models followed by updating the final aggregate model
using the updated weak learners’ estimates. The follow-
ing lemma proves that the algorithm guarantees perfect
unlearning.
Lemma 1: The unlearning protocol described in Algo-
rithm 3 perfectly unlearns the desired samples from the
model in the sense of Definition 1.

Proof: Without loss of generality, we consider a
single sample [xTu , yu] that is requested to be unlearned
from the model, which appears in [Xj ,yj ] that is used
to train the j-th weak learner whose model is denoted
by Mh

j(Xj ,yj). First, the protocol updates this train-
ing dataset to be [˜︁Xj , ˜︁yj ] by subtracting the sample
[xTu , yu] from the corresponding coded sample in order
to remove it from the dataset [Xj ,yj ]. Then, the j-th
weak learner, whose new training dataset is [˜︁Xj , ˜︁yj ], is
trained from scratch and the resulting model is denoted
as U(Mh

j(Xj ,yj), [x
T
u , yu]). This model is equivalent to

a modelMh′

j (
˜︁Xj , ˜︁yj), where h′ is chosen randomly. Us-

ing the uniqueness property of the linear and ridge re-
gression solutions, we have the following:

U(Mh
j(Xj ,yj), [x

T
u , yu]) =Mh′′

j (Xj \ xu,yj \ yu),
(13)

for some random h′′. Hence, the desired sample is per-
fectly unlearned from the j-th weak learner. The same
argument applies to all other affected weak learners af-
ter removing the desired samples from their correspond-
ing training datasets. Therefore, as the resulting models
from the affected weak learners are updated along with
re-calculating the aggregation function, the overall up-
dated model perfectly unlearns the desired samples from
the model.

For large-scale problems, we can speed up the un-
learning protocol even more. Using iterative optimiza-
tion methods one can start the optimization problem for
the weak learners on the new training dataset using the
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solution from their previous model. Specifically, for lin-
ear and ridge regression problems the resulting model
will always be the same as the one trained from scratch
since these iterative methods will converge to a unique
global minimizer regardless of the initialization. How-
ever, this cannot be used for other complex models such
as the over-parameterized multi-layer perceptron (MLP)
since the training loss can be zero for these models.
Hence, when a sample is removed and the model is ini-
tialized from the previous model, it will immediately
converge since the training loss is already zero, but this
solution was reached in part due to the removed sam-
ple. Therefore, this approach in the over-parameterized
scenario does not perfectly unlearn the sample.

The last design parameter of the coded learning is the
generator matrix G. One of the properties of the ma-
trix G used in the encoder is its density ρ, and it can be
seen in Algorithm 3 that the density of G directly af-
fects the unlearning cost. For example, a sample whose
corresponding row in G is dense requires updating more
weak learners than a sample whose corresponding row
is sparse. Therefore, the design of such a matrix is di-
rectly related to the efficiency of unlearning. If we aim
to have the lowest unlearning cost for an encoder with
a specific rate, we use the minimum matrix density that
satisfies both of the aforementioned conditions for the
matrix G, which is ρ = 1

r . This corresponds to the case
where there is only one nonzero element in each row of
the matrix G, i.e., each sample only shows up exactly
in one coded shard.

Remark: Since the choice of the encoder in Algo-
rithm 1 is independent of the data, it does not leak any
information about the data itself and does not affect the
perfect unlearning condition. However, other types of
data-dependent encoders may require additional steps to
ensure the removal of the unlearned samples from the
encoder itself, which may introduce additional overhead.
An example of such encoders is one that assigns sam-
ples to weak learners based on some properties of the
training dataset itself. This leakage of information, even
if small, needs to be taken into account when designing
perfect unlearning protocols.

III. EXPERIMENTS
In this section, we present simulation results of some
experiments to compare the performance versus the un-
learning cost on realistic and synthetic datasets for two
protocols: the uncoded machine unlearning protocol de-
scribed in [5] and the proposed coded machine unlearn-
ing protocol. The experiments simulate the unlearning
of a sample from the training dataset, where the perfor-
mance is measured in terms of the mean squared error
and the unlearning cost is measured in terms of the time

required to retrain the affected weak learner.
We utilize the sklearn.linear_model pack-

age [36], specifically, LinearRegression or Ridge
modules, to produce the simulation results for all the ex-
periments. Since the cost of unlearning is related to the
size of the shards, we sweep the variable s while fixing
the rate for the coded scenario and observe the perfor-
mance. Each point in the plots shows the average of a
number of runs, where each run simulates the experi-
ment on a randomly shuffled dataset that is then split
into training and testing datasets according to the spec-
ified sizes. During each run, after splitting the dataset
into training and testing, Algorithm 1 is run first using
s and r for a specific code with rate τ = s

r and density
ρ = 1

r . Once the model is trained, a random sample from
the training dataset is chosen to be unlearned using Al-
gorithm 3. After all the runs are done, the performance
is measured as the average mean squared error of the
testing dataset, while the unlearning cost is measured as
the average time required to retrain the affected weak
learners, since removing a sample from the dataset has
negligible cost.

For the simulations, datasets are preprocessed as fol-
lows, each column of the original feature matrix and the
response vector is normalized to be in the range [0, 1].
If the random projections approximation [7] is used as
described in (7), then the projections are done on the
normalized features using a cosine activation function
and the following parameters

θi ∼ N (0,
1

2d
Id), (14)

bi ∼ unif(−π, π). (15)

A. RESULTS
We conduct three experiments to evaluate the proposed
protocol on realistic datasets. The first dataset is known
as the Physicochemical Properties of Protein Tertiary
Structure dataset [37]. The goal is to use the 9 original
features to estimate the root mean square deviation. This
dataset includes 45,730 samples, where 42,000 samples
are for training, and the rest are for testing. We consider
random projections with D = 300. The results shown in
Figure 3 show the simulation results for multiple values
of λ = 10−4, 10−5, 10−6 using a code of rate τ = 5.
It can be seen that coding provides better performance
compared to the uncoded machine unlearning at lower
unlearning cost, even when using regularization with dif-
ferent values.

The second dataset is known as the Computer Activ-
ity dataset [38]. It is concerned with estimating the por-
tion of time that the CPU operates in user mode using
different observed performance measures. We consider
random projections of the original features to a space
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Figure 3. Performance vs unlearning cost for different values of λ using
the Physicochemical Properties of Protein Tertiary Structure dataset [37],
random projections of features to a 300-dimensional space, and a code of
rate τ = 5.
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Figure 4. Performance vs unlearning cost for different rates τ using the
Computer Activity dataset [38], random projections of features to a
25-dimensional space, and λ = 10−3.

with D = 25. The dataset has 8,192 samples, with 12
original features, of which 7,500 samples are for train-
ing while the rest are for testing. The experiments use
a regularization parameter λ = 10−3 and different code
rates τ = 2, 5. The results are shown in Figure 4. In
this figure, we observe that coding provides better per-
formance compared to the uncoded machine unlearning
at a lower unlearning cost. Additionally, different rates
allow for different achievable performance measures as
evident in the figure. More on the effect of code rates
will be discussed later in the experiments on a large-
scale synthetic dataset.

Finally, we experiment on the Combined Cycle Power
Plant dataset [37]. The goal is to estimate the net hourly
electrical energy output using different ambient variables
around the plant. The dataset has 9,568 samples, with 4
original features, of which 9,000 samples are for train-
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Figure 5. Performance vs unlearning cost for different rates τ using the
Combined Cycle Power Plant dataset [37] and random projections of
features to a 20-dimensional space.

ing while the rest are for testing. We consider random
projections with D = 20. The experiments use linear re-
gression with no regularization and different code rates
τ = 2, 5 and their results are shown in Figure 5. For
this case, there is no region of coding to operate in,
and intuitively, we do not expect it to beat the perfor-
mance of the original learning algorithm with a single
uncoded shard. However, although coding does not pro-
vide a better trade-off in this case, it does not exhibit a
worse trade-off either.

The above experiments show results for datasets with
relatively small to moderate size and number of fea-
tures. It remains to be seen if similar behavior can be
observed if the dataset size as well as the number of
features become much larger. The following experiment
shows simulation results of a synthetic dataset gener-
ated as follows: a total of 600,000 samples are generated,
each with i.i.d. features of size d = 100 drawn from log-
normal distribution with parameters µ = 1, σ2 = 4, then
passed through a random 3-hidden-layers MLP, followed
by an output layer with standard normal noise term to
generate the desired response variable. The layers con-
tain 50, 25, 50 nodes, respectively, with a sigmoid ac-
tivation function and their weights and biases are i.i.d.
drawn from the standard normal distribution. We use
λ = 10−2 and apply random projections on the orig-
inal features using the parameters described above and
D = 2,000. The dataset is split into 500,000 samples for
training and 100,000 for testing. The simulation results
are shown in Figure 6. Note that log-scale is used on the
x-axis for better showing of the curves for the coded sce-
narios. It can be observed that as we increase the rate of
the code, the unlearning cost decreases while minimum
achievable MSE increases. Hence, one can choose the
maximum code rate that satisfies a performance close to
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Figure 6. Performance vs unlearning cost for synthetic data generated
from an MLP with lognormal(1, 4) features using random projections to
a 2,000-dimensional space, λ = 10−2, and codes of different rates τ .

the original learning algorithm.

B. DISCUSSION
The success of the proposed protocol is prominently
seen in cases where uncoded machine unlearning ex-
hibits significant degradation in performance as unlearn-
ing cost decreases. One possible intuition into why this
phenomenon occurs is related to the samples used for
training each of the weak learners. Influential samples
have been explored in the literature extensively [39]. As
we previously discussed, coding is a method of com-
bining samples into the coded dataset, including these
influential samples.

Let us examine the influence of individual samples on
the performance of the trained model. We take two of
the previously considered datasets, the Computer Activ-
ity dataset [38] and the Combined Cycle Power Plant
dataset [37]. We conduct the following experiment: we
randomly shuffle the data and split it into training and
testing datasets with the same sizes as we used before,
then we remove samples from the training dataset ac-
cording to some criteria, then train a single learner on
the remaining samples and observe its test MSE. We use
two criteria of removal, the first is as follows: remove a
sample if any of its original features lie outside certain
percentiles. This criterion removes what we denote as
outliers. The other criterion is as follows: remove sam-
ples whose original features lie inside certain percentiles,
this removes what we denote as inliers. In other words,
outliers are samples at the tails of the probability distri-
bution function (PDF), and inliers are the ones close to
the median. We vary these percentiles symmetrically on
both ends and observe the performance on the testing
data for multiple runs then compute the observed aver-
age test MSE. Figure 7 shows the experiment results for
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Figure 7. Original learning algorithm’s performance vs percentage of
remaining samples after removal of outliers and inliers from the Computer
Activity dataset [38].
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Figure 8. Original learning algorithm’s performance vs percentage of
remaining samples after removal of outliers and inliers from the
Combined Cycle Power Plant dataset [37].

the dataset with Computer Activity dataset and Figure
8 shows the experiment results for the Combined Cycle
Power Plant dataset. In Figure 7, we see a degradation in
performance as more outlier samples are removed which
is much more significant and immediate compared to
the case where inlier samples are removed. On the other
hand, in Figure 8, the performance of the model after
removing outliers and inliers is quite similar until we re-
move more than 50% of the samples, then a small gap
appears between the two curves that gets larger as the
number of removed samples increases.

We believe that one explanation behind the behavior
of the uncoded machine unlearning is related to the ex-
istence of these influential samples, i.e., outlier samples.
In particular, if influential samples exist in the dataset,
then the uncoded machine unlearning suffers significant
degradation as we increase the number of shards and the
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proposed protocol can provide a better trade-off. On the
other hand, if such influential samples do not exist, then
the uncoded machine unlearning does not exhibit any
degradation in performance as the number of shards in-
creases, and as shown in the experiment in Figure 5, the
proposed protocol does not improve on the uncoded ma-
chine unlearning and does not negatively affect it either.
It is worth noting that these influential samples exist in
heavy-tailed distributions which are quite common in a
range of real-world examples such as technology, social
sciences and demographics, medicine, etc, where ma-
chine learning is increasingly employed for these appli-
cations. In the aforementioned experiments, we observed
that if the probability distribution functions of some of
the features have heavy tails, then we have a trade-off
for the uncoded machine unlearning and coding provides
a better trade-off. However, if there are no heavy tails
in the probability distribution functions then we do not
see this trade-off and, hence, coding does not provide a
better trade-off.

To verify this observation, we create three synthetic
datasets with known feature distribution and known re-
lationships to the response variable. Each one of the
datasets has d = 100 i.i.d. feature vectors whose ele-
ments are drawn from lognormal(µ, σ2) distribution to
create the feature matrix X. Then, we map these fea-
tures X to a degree 3 polynomial with no interaction
terms, resulting in the following

Xp = [X,X◦2,X◦3], (16)

where X◦c is the element-wise c-th power of matrix X.
The response variable is generated using (8) with i.i.d.
elements of w and ϵ drawn from the standard normal
distribution. The lognormal distribution has two param-
eters, µ and σ2. We fix µ = 1 and vary σ2. As σ2

increases, the tail becomes heavier; hence, we expect
the trade-off to be more evident. The number of sam-
ples in each dataset is 25,000 samples, of which 23,000
are used for training and the rest are used for testing.
The simulated experiments for σ2 = 0.1, 0.5, 0.7 are
shown in Figure 9. The code used for all datasets has
rate τ = 5. As can be seen from the figure, as we in-
crease the value of σ2, the tail becomes heavier and
the trade-off becomes more significant for the uncoded
machine unlearning. Additionally, as the tail becomes
heavier, the gain provided by the proposed protocol in
terms of the trade-off is more significant compared to
the uncoded machine unlearning.

We also run experiments, same as the ones for the
datasets in Section III-A showing the effect of remov-
ing inliers versus removing outliers, for these synthetic
datasets. We run the inlier and outlier removal process
based on the original features and observe the perfor-
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Figure 9. Performance vs unlearning cost for synthetic data with
lognormal features with fixed µ = 1 and different values of σ2 used in a
polynomial of degree 3. The rate of the code is τ = 5. The inset figure
shows the PDFs of the original lognormal features of the considered
datasets with µ = 1 and different values of σ2.
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Figure 10. Original learning algorithm’s performance vs percentage of
remaining samples after removal of outliers and inliers from the lognormal
polynomial datasets.

mance of the trained model’s performance on the testing
dataset. Figure 10 shows results of these experiments.
Similar to what we observed in the realistic dataset ex-
periments, for distributions with heavier tails, removing
outlier samples has more influence than inlier samples.

Additional experiments on synthetic datasets are
shown in Appendix A. They include experiments with
known relationships between the features and response
variable as well as a dataset generated using features
passed through a random 3-hidden-layers MLP to pro-
duce the response variable where we utilize random pro-
jections to model this relationship.

IV. CONCLUSION
In this work, we considered the problem of perfect ma-
chine unlearning for ensemble learning scenarios where
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the model consists of a master node and multiple non-
communicating weak learners trained on disjoint shards
of the training dataset. We focused on the trade-off be-
tween the performance and unlearning cost for regres-
sion models. We presented a new method of learning
called coded learning which can potentially enable more
efficient unlearning while exhibiting a better trade-off,
in terms of the performance versus the unlearning cost,
compared to the uncoded machine unlearning. We pre-
sented a protocol for coded learning along with a linear
encoder for regression datasets as well as its correspond-
ing unlearning protocol and showed its success in ensur-
ing perfect unlearning.

We presented a handful of experiments to show the
proposed protocol can succeed in providing a better
trade-off for various realistic datasets with different val-
ues of the underlying parameters. On the other hand,
we considered datasets for which the uncoded machine
unlearning does not exhibit any trade-off between per-
formance and unlearning cost and showed that coding
in these scenarios maintains performance on par with
the uncoded machine unlearning. In the experiments, we
showed that when using appropriate codes one can po-
tentially reduce the unlearning cost to a fraction of the
unlearning cost for a single learner trained on the entire
dataset while observing a comparable performance to the
one of a single learner. Finally, discussions are provided
on whether we should expect the proposed protocol to
outperform the uncoded machine unlearning based on
the existence of influential samples in the dataset using
properties of the probability distribution function of the
dataset features.

We consider this work as a first step towards under-
standing the role of coding in machine unlearning. A
few possible directions of future work include extending
the proposed protocol to concept classes with higher ca-
pacity, such as deep neural networks. Studying different
classes of codes beyond linear random codes for super-
vised learning problems is also another possible avenue
for research. Designing protocols for almost perfect ma-
chine unlearning in convex/non-convex models where
only statistical guarantees are required is another area
for future investigation. Finally, theoretical exploration
of the interplay between influential samples in conjunc-
tion with random coding and their impact on the final
learned model is another interesting direction for future
work.
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Figure 11. Performance vs unlearning cost for synthetic data with χ2(1)
features used in a polynomial of degree 4.

.

APPENDIX A SYNTHETIC DATA
In this appendix, we further experiment with three syn-
thetic datasets to show the trade-off using the uncoded
machine unlearning and the proposed coded machine un-
learning. In the first experiment, we randomly generate
d = 100 i.i.d. feature vectors where each element is
drawn from χ2(1), i.e., a chi-square distribution with 1
degree of freedom. Then, we map these features X to a
degree 4 polynomial with no interaction terms, resulting
in the following

Xp = [X,X◦2,X◦3,X◦4]. (17)

Then, the response variable is generated as described
in (8), where elements of w and ϵ are i.i.d. and gen-
erated randomly from the standard normal distribution.
The size of the dataset is 47,000 samples, of which
42,000 samples are for training the rest are for testing.
The simulation is run with no regularization term and us-
ing codes of rates τ = 2, 5, 10. The result of this exper-
iment is shown in Figure 11. It can be seen that coding
provides better performance compared to the uncoded
machine unlearning at a lower unlearning cost. Addi-
tionally, it can be observed that different rates allow for
different achievable MSE values. As the rate increases,
the lowest achievable MSE increases. Hence, similar to
what is observed in Figure 6, although higher rates re-
duce the unlearning cost, they might be incapable of
achieving some desired performance measures. For ex-
ample, see the rightmost points in each of the curves for
rates τ = 2, 5, 10 in Figure 11.

In the second experiment, we use a random MLP to
create a nonlinear mapping and utilize random projec-
tions to simulate the experiment. Specifically, we ran-
domly generate d = 50 i.i.d. feature vectors whose el-
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Figure 12. Performance vs unlearning cost for synthetic data generated
from an MLP with lognormal(1, 4) features using random projections to
a 1,000-dimensional, code rate τ = 5, and different values of λ.

ements are drawn from a lognormal(1, 4) distribution,
then pass these features through a 3-hidden-layers MLP
with 50, 25, 50 nodes for each layer, respectively, each
with a sigmoid activation function, followed by a linear
output layer with a single node. All the weights and bi-
ases of these layers are i.i.d. and are generated from
a standard normal distribution. A standard normally-
distributed error term is added to the output of the MLP
to generate the final response variable. In this experi-
ment, we use random projections as described in (7) on
the normalized original features using D = 1,000 and
the aforementioned parameters. The size of the dataset
is 90,000 samples, of which 82,000 are for training and
the rest are for testing. The results of this experiment for
a code with rate τ = 5 and regularization parameters
λ = 10−2, 10−3 are shown in Figure 12. To illustrate
the benefit of random projections, compare the curves
in the figure with the performance of using the original
features and ridge regression on a single learner which is
trained on the entire uncoded training dataset where we
observe an average MSE in the range 0.147 − 0.15 for
the aforementioned values of λ, as well as λ = 0. This
experiment shows that coding can provide gain in the
trade-off, compared to the uncoded machine unlearning,
even for models that employ regularization using differ-
ent values of λ.

In the third experiment, we generate d = 100 i.i.d.
feature vectors where each element of these vectors is
drawn from a standard normal distribution. Then, the re-
sponse variable is generated as a linear combination of
these features with additive noise, where elements of w
and ϵ are i.i.d. and generated randomly from the standard
normal distribution. The size of the dataset is 15,000
samples, of which 10,000 are for training the rest are
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Figure 13. Performance vs unlearning cost for synthetic data with
standard normally distributed features used in a linear model.

for testing. We simulate the linear regression problem
using codes of rates τ = 2, 5. The result of this exper-
iment is shown in Figure 13. This experiment shows a
case where the uncoded machine unlearning maintains
the same performance as the unlearning cost decreases.
For this case, there is no meaningful region for the cod-
ing to operate in and, intuitively, we do not expect it to
beat the performance of the original learning algorithm
with a single uncoded shard. Therefore, although coding
does not provide a better trade-off in this case, it does
not exhibit a worse trade-off either.

Finally, we conduct two experiments that are con-
cerned with the outlier vs inlier removal for two datasets;
the aforementioned chi-square features in a polynomial
and the standard normal features in a linear model. The
results of the two experiments are shown in Figure 14
and Figure 15, respectively. Similar to the observations
discussed in Section III, the degradation in performance
is more evident in datasets whose features have heavier
tails. Furthermore, as we observed in the experiments in
this appendix, coding provides a better trade-off com-
pared to the uncoded machine unlearning for datasets
with heavy-tailed features; however, if the dataset does
not have heavy-tailed features, coding does not nega-
tively affect the trade-off.

APPENDIX B TRAINING PERFORMANCE
In this appendix, the performance of a model on the
training dataset is measured as the average MSE of the
uncoded training dataset, regardless of whether coding
is utilized or not, using the aggregate model. Note that
the learning cost is computed as the average time that
is taken to train the weak learners on their respective
datasets. The resulting trade-off for the realistic datasets
considered in Section III is shown in Figures 16-18,
and for the experiments considered in Appendix A is
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Figure 14. Original learning algorithm’s performance vs percentage of
remaining samples after removal of outliers and inliers from the χ2(1)
polynomial dataset.
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Figure 15. Original learning algorithm’s performance vs percentage of
remaining samples after removal of outliers and inliers from the linear
dataset with standard normal features.

shown in Figures 19-21. It can be observed from these
figures that the average train MSE is always less than
the average test MSE when comparing each point in
these figures with its corresponding point in the average
test MSE figures. The correspondence here is not an x-
axis correspondence, but rather an order correspondence.
For instance, the rightmost point in any curve should be
compared with the rightmost point in the corresponding
curve and so on.
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Figure 16. Training performance vs learning cost for different values of λ
using the Physicochemical Properties of Protein Tertiary Structure
dataset [37], random projections of features to a 300-dimensional space,
and a code of rate τ = 5.
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Figure 17. Training performance vs learning cost for different rates using
the Computer Activity dataset [38], random projections of features to a
25-dimensional space, and λ = 10−3.
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Figure 18. Training performance vs learning cost for different rates using
the Combined Cycle Power Plant dataset [37] and random projections of
features to a 20-dimensional space.
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Figure 19. Training performance vs learning cost for synthetic data with
χ2(1) features used in a polynomial of degree 4.
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Figure 20. Training performance vs learning cost for synthetic data
generated from an MLP with lognormal(1, 4) features using a code of
rate τ = 5 and different values of λ.
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Figure 21. Training performance vs learning cost for synthetic data with
standard normally distributed features used in a linear model.
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